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Водород, несмотря на свое повсеместное распространение, не сразу приходит на ум, 

когда речь заходит о декарбонизации мировой энергетики. В настоящее время водород не 

является системообразующим энергоносителем, что подразумевает незначительную заинте-

ресованность в данном виде топлива людей, задающих вектор развития российской энерге-

тики. В статье будут описаны способы хранения данного энергоресурса, а также предприня-

ты попытки выяснить, какой из них является наиболее перспективным технологическим ре-

шением, определяющим дальнейшее развитие выбранного сегмента электроэнергетики. 
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ВВЕДЕНИЕ 

Актуальность выбранной темы связана с растущей значимостью водорода в мировой 

энергетике. Экологический фактор, занимающий в информационном поле все большее про-

странство, подкрепляет позиции водорода не только как источника, но и в роли накопителя 

избыточной электроэнергии, получаемой от солнечных и ветряных электростанций. Описан-

ные способы применения водорода могут стать серьезным подспорьем для регионов, испы-

тывающих трудности с бесперебойным электроснабжением. Помимо этого, возможность 

снижения углеродного следа во многих смежных областях (транспорт, металлургия) – серь-

езная причина для осуществления дальнейших технологических открытий. Хранение водо-

рода – наукоемкая задача, требующая серьезных капиталовложений и исследований. 

В настоящее время человеку известно несколько довольно эффективных методов хранения 

водорода, каждый из которых имеет свои явные преимущества, но также не обделен и весо-

мыми недостатками, что и будет описано в данной статье. 

 

ОБЪЕКТЫ ИССЛЕДОВАНИЯ  

Объект исследования: способы хранения водорода. 

 

МЕТОДЫ ИССЛЕДОВАНИЯ 

Методы исследования: теоретический анализ, сравнительно-правовой анализ, абстра-

гирование, анализ статистических данных. 

 

ЦЕЛЬ ИССЛЕДОВАНИЯ 

Цель данного исследования – выяснить наиболее перспективные способы хранения 

водорода. 



2 
 

Задачи исследования: 

 описать особенности обозначенных методов хранения; 

 сравнить способы хранения между собой; 

 выяснить наиболее перспективный способ хранения. 

 

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ 

Водород – самый легкий газ из всех известных на данный момент, при нормальных 

условиях для хранения 1 кг водорода понадобится резервуар объемом свыше 10 м3, что со-

вершено неприемлемо в условиях его промышленного использования. Для хранения не-

большого числа сжатого до 70 МПа водорода используют стальные баллоны [1], однако су-

ществование водородной хрупкости вынуждает применять меры для предотвращения разру-

шения металла [2]. 

 использование защитных покрытий (ингибиторы коррозии, никелирование);  

 контроль условий эксплуатации (снижение времени контакта с агрессивными сре-

дами); 

 легирование (использование металлов, влияющих на устойчивость к водороду). 

Помимо вышеперечисленных важными факторами являются утечка и воспламеняе-

мость водорода, требующие серьезного технологического контроля для предотвращения ава-

рийных ситуаций. Диапазон воспламеняемости водорода в воздухе составляет от 4 до 77 %, 

что затрудняет создание безопасной негорючей среды хранения. Помимо широкого диапазо-

на воспламеняемости, энергия, требующаяся водороду для воспламенения, является одной из 

самых низких энергий воспламенения среди известных веществ (около 0,02 МДж). Данный 

факт усугубляет риск утечки частиц вещества сквозь дефекты емкостного оборудования. Со-

вокупность перечисленных факторов вынуждает искать иные способы хранения водорода. 

Для снижения рисков возникновения аварийных ситуаций существует несколько способов 

хранения промышленного водорода (хранение сжатого водорода было описано выше: [3] ). 

 Хранение жидкого водорода. 

 Хранение водорода в виде гидридов. 

 Хранение водорода в носителях (органических и неорганических). 

 Хранение водорода в микросферах. 

Хранение водорода в жидком состоянии подразумевает низкие температуры (-253 °С), 

что представляет собой серьезные технологические трудности, связанные с хранением 

и транспортировкой энергоносителя на дальние расстояния. В настоящий момент в США 

стоимость хранения 1 кг водорода в крупных резервуарах превышает 300 долл. США [4].  

В малых эта сумма увеличивается в 2–3 раза, так как согласно эффекту масштаба увеличение 

объема происходит быстрее роста площади поверхности, что в абсолютных значениях и бу-

дет давать существенную разницу. Главным недостатком такого вида хранение является сам 

процесс ожижения водорода. Низшая теплота сгорания (НТС) вещества равна 33 кВт·ч/кг, 

затраты на ожижение составляют 10–14 кВт·ч/кг, следовательно, больше трети энергии, за-

пасенной в ресурсе, тратится только на его сжижение [5]. 

Однако, несмотря на все недостатки, существует явное преимущество в хранении во-

дорода таким образом, оно заключается в плотности получившегося вещества. Плотность 

жидкого водорода составляет 70,8 кг/м3, что более чем в 785 раз превышает значение газооб-

разного состояния при нормальном давлении. Помимо явных габаритных и энергетических 

(плотность энергии на единицу объема) преимуществ, существуют еще и логистические, 

обусловленные эффективностью перевозок больших масс энергоносителя, при этом отсут-

ствует необходимость поддерживать большое (500–700 бар) давление, что значительно сни-

жает требования к прочности материалов. Важной чертой всех способов хранения является 
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чистота водорода при хранении. В жидком состоянии водород имеет крайне низкую темпе-

ратуру, ниже, чем температуры затвердевания всех потенциально возможных примесей, вхо-

дящих в состав первоначальной смеси. Вследствие чего уже на этапе сжижения газа требует-

ся осуществлять очистительные процедуры (адсорбция под давлением, мембранное разделе-

ние, дистилляция) [6]. 

Адсорбция осуществляется с помощью сосуда с веществом, главной функцией кото-

рого является адсорбирование нежелательных примесей. Мембранное разделение осуществ-

ляется при прохождении газа через различные (металлические или половолоконные) мем-

браны, эффективность которых определяется их селективностью. Несмотря на более низкие 

показатели чистоты концентрации водорода, данный способ очистки выгодно отличается от 

предыдущего своей экономичностью и высокой мобильностью [7]. Дистилляция происходит 

посредством специальной колонны (непрерывного или периодического действия), в которой 

происходит разделение примесей и водорода, в результате чего последний, более летучий, 

поднимается в верхнюю часть колонны ректификации, а труднолетучие компоненты оседают 

на дне. 

Абсорбирование водорода является главным основанием для образования гидрида 

вещества. Данный вид хранения энергоносителя лишен многих недостатков, свойственных 

сжиженному газу (диапазон допустимых температур, энергозатраты и безопасность), однако 

использование гидридов повсеместно редко является рентабельным способом хранения и 

транспортировки водорода. Наиболее явным недостатком данного метода является содержа-

ние водорода в гидридах. Водородоаккумулирующие свойства фаз Лавеса позволяют до-

биться 2,5%-го содержания водорода в смеси, что создает существенные трудности при 

транспортировке больших объемов вещества. Более высокую массовую плотность (свыше 

7,5 %) имеет гидрид магния, однако процессы образования и десорбции происходят лишь 

при достаточно высоких температурах [8]. 

Еще одним важным фактором, влияющим на распространение данного метода содер-

жания водорода, является высокая стоимость интерметаллических соединений. Помимо это-

го, сами свойства соединений могут со временем ухудшаться, теряя емкость из-за цикличных 

процессов в ходе эксплуатации. Неоспоримым преимуществом хранения водорода в таком 

виде является более высокая плотность вещества. Объемная плотность водорода в большин-

стве соединений сопоставима с плотностью элемента в воде и составляет порядка 100 кг/м3, 

однако гидриды титана и ванадия могут превышать эти значения в 1,5–1,8 раза, что, в свою 

очередь, дает двукратный прирост объемной плотности в сравнении с хранением водорода в 

жидком состоянии. Компактность является главным преимуществом описанного метода. 

Кроме того, выгодно отличающей способностью такого метода считаются условия получе-

ния и хранения гидридов интерметаллических соединений. Явным преимуществом в процес-

се получения гидриды обладают перед жидким водородом, для получения которого требу-

ются крайне низкие температуры (20 К). Гидриды же в зависимости от атомов металлов об-

разуются при температурах от 290 до 475 К, что позволяет их содержать в условиях, мало 

отличных от условий окружающей среды, при этом ограничивая влажность для снижения 

рисков образования оксидных пленок, ухудшающих поглощающие способности и со време-

нем уменьшающих емкость интерметаллических соединений. Также данный способ хране-

ния водорода имеет явное преимущество перед баллонами высокого давления, которые по-

мимо энергетических затрат на сжатие имеют явные проблемы с безопасностью (взрыво-

опасность, воспламенение и водородное охрупчивание материала). Гидриды интерметаллов 

лишены таких недостатков за счет умеренных давлений (до 40 бар), при которых происходит 

процесс образования и распада соединений [5]. Немаловажное отличие хранения водорода в 

виде гидридов заключается в кристаллической решетке металла, которая, взаимодействуя с 
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водородом, «очищает» его от других газов, оставляя их в форме примесей. Затем в результа-

те десорбции получается газ, чистота которого сравнима с водородом после процедуры ад-

сорбции под давлением (99,999 %). 

Метод хранение водорода в жидкофазных носителях основан на вступлении оного в 

обратимую химическую реакцию с органическим соединением. Продуктом реакции стано-

вится жидкость, которую так же, как и в случае с гидридами интерметаллических соедине-

ний, можно хранить в условиях, близких к естественным. Главной особенностью данного 

способа является доступность соединения для транспортировки. В случае с жидким водоро-

дом она затруднена вследствие высоких требований, предъявляемых к внешним условиям, а 

доставка гидридов в небольших объемах экономически нецелесообразна из-за огромной до-

ли металла в соединении. Жидкофазные органические носители водорода лишены данного 

недостатка. Их физические свойства (летучесть, температуры кипения и замерзания и вяз-

кость) сопоставимы со свойствами нефтепродуктов, что делает возможным транспортировку 

носителей посредством существующей инфраструктуры (танкеры, автомобильные и желез-

нодорожные цистерны, трубопроводы). Гравиметрическая плотность сопоставима с массо-

вой плотность водорода в гидриде магния (более 7 %), объемная плотность не превышает 

60 кг/м3 [10]. Описанные характеристики делают данный вид хранения целесообразным. Од-

нако данный метод не является полноценно экологичным в виду возможного образования 

метана при нахождении смеси в станциях дегидрирования. Помимо рисков возникновения 

углеродного следа существует проблема, напрямую влияющая на процесс гидрирования и 

дегидрирования носителя. Она связана с высокими температурами протекания обозначенных 

процессов, и если во время поглощения водорода реакция носит экзотермический характер, 

что делает возможным дальнейшее использование выделенного тепла, то в результате обрат-

ной реакции, протекающей при еще больших температурах (250–320 °С), компенсировать 

затраченную энергию не представляется возможным [10]. 

Стоит учесть тот факт, что даже описанные температуры достигаются лишь посред-

ством катализаторов, которые при взаимодействии с веществом способствуют снижению 

энергетического барьера и увеличению скорости протекания реакции. Естественно, исполь-

зование катализаторов приводит к удорожанию самого процесса, в их роли выступают ме-

таллы платиновой группы. Также серьезным недостатком данного метода является чистота 

дегидрированного водорода. Высокочистый газ (99,999 %) можно получить лишь при мини-

мальном содержании CO, что достигается лишь предварительной осушкой и очисткой. 

Наибольшая часть образующихся при дегидрировании примесей вызвана именно присут-

ствием воды, входящей в состав жидкофазных носителей. 

 Вариация, обозначенная выше, не является единственной. Альтернативой органиче-

ским носителям водорода выступает аммиак, обладающий более высокими показателями 

объемной (до 120 кг/м3) и гравиметрической (более 17,5 %) плотности. Технологическое раз-

витие промышленного производство аммиака продолжается уже на протяжении более полу-

века, что подразумевает развитую инфраструктуру и существенный эксплуатационный опыт. 

Однако этот способ не решает проблемы дороговизны и энергетических затрат, вследствие 

необходимости сжижения аммиака, а также больших температур десорбции (до 900 °С) при 

использовании никелевого катализатора. Перспективы метанола, выступающего альтернати-

вой аммиаку, тоже весьма туманны. Несмотря на внушительные показатели объемной 

(до 100 кг/м3) и гравиметрической (свыше 12 %) плотности, промышленное производство 

метилового спирта на экологических началах находится только на раннем этапе, вследствие 

чего данный вид хранения водорода в ближайшем будущем не стоит рассматривать 

как наиболее обоснованный. Чистота получаемого в процессе дегидрации водорода сильно 

уступает вышеописанным способам и при условии использования мембранных установок 
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не превышает 98 % [11]. Основной примесью смеси, выходящей из реактора, является сам 

аммиак. Использование дополнительных систем очистки для достижения высокой чистоты 

(99,999 %) ведет к удорожанию всего процесса. 

Вероятно, наиболее наукоемкая и активно исследуемая технология для систем хране-

ния водорода – муравьиная кислота. Объемная емкость водорода при выборе этого способа 

хранения составляет 53 кг/м3, что на 25 % больше, чем при хранении газообразного водорода 

при 700 бар, а внушительная массовая доля вещества (4,4 %) делает описываемую техноло-

гию весьма привлекательной для дальнейшего развития [12]. Использование катализаторов 

платиновой группы делает возможным получение высококачественного водорода (99,999 %). 

Важной особенностью муравьиной кислоты является ее агрегатное состояние. Она не требу-

ет сжижения, как аммиак, и остается в жидком состоянии при бóльших температурах, неже-

ли метанол. Также преимуществом муравьиной кислоты является низкая токсичность, чем 

опять же не могут «похвастаться» аммиак и метиловый спирт. Важная роль муравьиной кис-

лоты в снижении углеродного следа заключается в концепции ее замкнутого цикла, на пер-

вом этапе которого можно использовать CO2, уловленный из атмосферы. Однако для проте-

кания реакции полученного электролизом водорода и уловленного углекислого газа требует-

ся катализатор. Тем не менее передовые исследования в области зеленой химии постепенно 

решают вопрос замены металлов платиновой группы (МПГ) более дешевыми аналогами на 

основе кобальта. Главным недостатком выбранного способа является его цена, складываю-

щаяся из дорогостоящих технологий прямого улавливания водорода из атмосферы, корро-

зийные свойства кислоты требуют использования коррозийно-стойких материалов, а также 

необходимость применения катализаторов, чувствительных к угарному газу, выделяющему-

ся при дегидрации.  

Техническим новшеством, стремительно выходящим за рамки технологических раз-

работок, является хранение водорода в микросферах. Общий принцип данного метода за-

ключается в заполнении микроскопических сфер газообразным водородом под большим 

давлением (свыше 1 000 бар), который активно проникает в структуру материала, наполняя 

полости сфер. Проникновение в структуру материала становится возможным при температу-

рах 473–673 К, что требует дополнительных энергозатрат на нагрев [13]. Данная технология 

имеет внушительный теоретический потенциал, связанный с уменьшением плотности мате-

риала стенок. В настоящее время наибольшее распространение в качестве такого получило 

стекло. Максимально достигнутая гравиметрическая плотность водорода в таких сферах со-

ставляет 12 %, при ожидаемой объемной плотности в районе 50 кг/м3 [3]. Несмотря на спо-

собность выдерживать большие внутренние давления, сферы чувствительны к механическим 

воздействиям извне, по причине которых происходят потери водорода. Главным недостат-

ком описываемого метода является температура, которую необходимо поддерживать для 

эффективного высвобождения водорода из сферы, значения могут достигать 600 °С [14].  

Однако чистота водорода, получаемого на выходе, очень велика (99,999 %) за счёт размера 

других молекул, не способных в существенном количестве проникать сквозь поверхность 

стекла, а использование высококачественных материалов с минимальным числом примесей 

способно свести выделение парниковых газов при выпуске вещества на нет. 

Перспективным направлением развития микросфер как носителей водорода является 

переход к полимерным и композитным материалам. В настоящий момент технологическая 

зрелость данных решений невелика, однако потенциальный переход на материалы такой 

структуры могут существенно повлиять на сегмент водородной энергетики. Основная цель 

композитной структуры заключается в создании универсальных материалов, сочетающих 

ключевые преимущества предшествующих наработок. 
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ЗАКЛЮЧЕНИЕ 

Все описываемые в данной статье виды хранения водорода занимают свою экономи-

ческую и эксплуатационную нишу, на запросы которой отвечают их свойства. В настоящий 

момент уникальных, общеэксплуатационных способов хранения водорода не существует. 

Сравнительные характеристики физических и экономических особенностей методов хране-

ния водорода приведены ниже (таблицы 1, 2). 
 

Таблица 1 – Физические особенности методов хранения водорода 

Методы 

хранения 

водорода 

Объемная 

плотность, 

кг/м3 

Гравиметрическая 

плотность, % 

Давление, 

бар 

Температура 

хранения, °С 

В баллонах под давле-

нием 700 бар 

40 5,5 700 Комнатная 

Жидкий водород 70,8 8–9 До 10  -253 °С 

Гидриды интерметалли-

ческих соединений 

До 190 

(VH2) 

До 150 

(TiH2) 

Фазы Лавеса  

(до 2,5) 

MgH2 

(7,5) 

±1,1 

До 30 (для гидри-

рования) 

Комнатная 

Жидкофазные носители До 60 До 7,1 ±1,1 

До 10 (для гидри-

рования) 

Комнатная 

Аммиак 100–120 17,5 До 20  

(20°С) 

-33 °С 

или комнат-

ная (под дав-

лением) 

Муравьиная кислота 53 4,4 ±1,1 

До 50 (для гидро-

генизации) 

Комнатная 

Микросферы До 50 До 12 ±1,1 

Свыше 1 000 

(внутри) 

Комнатная 

 

Таблица 2 – Экономические особенности методов хранения водорода 

Методы 

хранения 

водорода 

Энергетические 

затраты 

(зарядка) 

Энергетические  

затраты 

(разрядка) 

Чистота 

выделяемого 

вещества 

Катализаторы 

В баллонах под 

давлением 700 бар 

Сжатие  

(до 15% НТС) 

0 % НТС Очень высокая 

(≥99,99 %) 

Не применяют-

ся 

Жидкий водород Сжижение 

(до 40 % НТС) 

0 % НТС Очень высокая 

(≥99,99 %) 

Не 

применяются 

Гидриды интер-

металлических 

соединений 

Нагрев 

(до 30 % НТС) 

Нагрев 

(20 % НТС) 

Очень высокая 

(≥99,99 %) 

Ni, Zr, Pd 

Жидкофазные но-

сители 

Нагрев 

(до 30 % НТС) 

Нагрев 

(20–35 % НТС) 

Низкая 

(97 % до очистки) 

МПГ 

Аммиак Сжатие и нагрев 

(25 % НТС) 

Разложение 

(25 % НТС) 

Очень низкая  

(≤ 80 % до очистки) 

 

Ni 

Муравьиная кис-

лота 

Энергия активации  

(до 25 % НТС) 

Разложение 

(до 25 % НТС) 

Высокая 

(99,5 % до осуше-

ния) 

МПГ 

(в перспективе  

замена на по-

ристые матери-

алы ) 

Микросферы Сжатие и нагрев 

(до 35 % НТС) 

Нагрев 

(до 35 % НТС) 

Очень высокая 

(≥99,99 %) 

Не 

применяются 
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Самым доступным и распространенным методом является хранение газообразного 

водорода в баллонах под давлением 700 бар. Крупные логистические перевозки ресурса за 

счет большой объемной плотности осуществляются с применением криогенного метода. 

Оставшиеся способы, упомянутые в данной статье, относятся к разряду перспективных и на 

данный момент не имеют такого технологического развития, чтобы вытеснить основные ме-

тоды. Гидриды интерметаллических соединений, несмотря на отсутствие серьезных требова-

ний к условиям окружающей среды, невозможно распространить повсеместно из-за неболь-

шой массовой доли водорода в веществе и дороговизны металлов. Основная масса жидко-

фазных носителей до конца не экологичны, а необходимость нагрева на обеих стадиях про-

цесса и использование дорогих катализаторов платиновой группы перекрывает преимуще-

ства развитой инфраструктуры. Аммиак также не может являться совершенным носителем 

из-за огромных температур десорбции, токсичности и необходимости использования боль-

шого числа очистительных сооружений. Концепция замкнутого цикла привлекает внимания 

исследователей к муравьиной кислоте, однако дороговизна технологий улавливания CO2 и 

необходимость использовать дорогостоящие катализаторы тормозят распространение техно-

логии. Микросферы на данный момент не являются коммерческой технологией, но широко 

рассматриваются в области научных исследований. Возможность существенного снижения 

температуры внедрения водорода в сферу за счет полимеров и потенциальная вероятность 

объединения прочностных и температурных свойств в композитах могут совершить техноло-

гическую революцию в сфере водородной энергетики, однако в настоящее время использо-

вание данного метода экономически нецелесообразно. 
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