# ПОДХОД К МОДЕРНИЗАЦИИ ФИЛЕТИРОВОЧНОЙ МАШИНЫ ДЛЯ МАЛЫХ РЫБОПЕРЕРАБАТЫВАЮЩИХ ПРЕДПРИЯТИЙ



А. М. Крайнов, студент E-mail: andrey.kraynov.03@mail.ru ФГБОУ ВО «Калининградский государственный технический университет»

О. В. Агеев, доктор технических наук, доцент, профессор кафедры инжиниринга технологического оборудования Е-mail: oleg.ageev@klgtu.ru ФГБОУ ВО «Калининградский государственный технический университет»

В статье показана актуальность дальнейшего совершенствования технологических машин для филетирования рыбы. Выявлены недостатки машины для филетирования, применяемой на малых рыбоперерабатывающих производствах. Разработан подход к модернизации конструкции для устранения ее решающих недостатков. Впервые предложено техническое решение, обеспечивающее надежное распластывание тушки перед вырезанием филейчиков, а также предотвращающее неравномерную подачу сырья к режущим рабочим органам. Машина дополнительно снабжена ротором, который выполнен в виде двух валиков, установленных оппозитно с возможностью регулирования расстояния между ними, что позволит распластывать тушки рыбы различных размеров. Предлагаемое решение повысит качество готовой продукции и сократит потери ценного рыбного сырья. Применение разработанных приспособлений снизит количество брака при выработке рыбного филе.

**Ключевые слова:** филетирование, рыба, филе, дисковый нож, резание, распластыватель, ресурсосбережение, ротор.

#### **ВВЕДЕНИЕ**

Проблема ресурсосберегающего филетирования рыбы имеет важное экономическое и хозяйственное значение. В «Стратегии развития рыбохозяйственного комплекса Российской Федерации на период до 2030 года», утвержденной 26 ноября 2019 г. распоряжением Правительства РФ № 2798-р, особое внимание уделяется первичной обработке рыбы, в частности существенному увеличению выпуска рыбного филе, его упаковке и холодильному хранению.

Рыбоперерабатывающее машиностроение является перспективной отраслью, которая в последние годы демонстрирует положительную динамику. Следует отметить, что за последние 10 лет объем производства пищевого оборудования в Российской Федерации увеличился в 2,5 раза. При этом в стране функционируют более 270 предприятий, выпускающих пищевые машины для переработки сырья животного происхождения.

Производство рыбных филейчиков позволяет сократить потери ценных ингредиентов, а также эффективно реализовать побочные продукты разделывания, т. е. создавать безотходные производства. При этом большое значение имеет реализация процесса филетирования при минимальных потерях ценного сырья и высокой эффективности режущих рабочих органов [1–3]. В отрасли запатентовано существенное количество устройств [4–6] и приспособлений для филетирования рыбы [7–9]. Ряд машин для нарезки рыбного филе разработан в последние годы с применением средств и методов мехатроники [10–12]. Филетирование рыбы – это самостоятельный технологический процесс на этапе первичной обработки рыбы. Исходным сырьем при этом является потрошеная обезглавленная тушка без хвостового плавника.

В рыбной отрасли широко применяется филетировочная машина российской разработки для малых предприятий, пользующаяся хорошим спросом у небольших переработчиков сырья (рисунки 1–3). Однако, по имеющимся данным, данная конструкция, несмотря на производственную апробированность, доступность, хорошую ремонтопригодность и длительный срок службы, обладает рядом существенных недостатков. Одним из известных негативных факторов является неустойчивая подача потрошеной тушки рыбы к режущим рабочим органам — спаренным дисковым ножам. Настоятельно требуется повышение надежности подачи и фиксирования тушки рыбы в данной конструкции, улучшение точности реза, что позволит сократить потери и улучшить качество филе. Анализ показал, что в машине необходимо наличие распластывателя перед блоком филетировочных ножей.

## ОБЪЕКТ ИССЛЕДОВАНИЯ

Объектом исследования является филетировочная машина для малых предприятий, предназначенная для производства рыбного филе из промысловых рыб веретенообразной формы. Рассматриваемая машина рассчитана на применение в условиях малых береговых рыбообрабатывающих предприятий. В качестве режущих инструментов в данной филетировочной машине используются дисковые вращающиеся ножи, установленные под определенным углом друг к другу. Такие филетировочные устройства просты в изготовлении, имеют небольшие габариты и массу, что удобно для работы в береговых и судовых условиях, а также не требуют высокой квалификации персонала при наладке и обслуживании.

#### ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

В связи с запросом производственных организаций целью настоящей работы является разработка подхода к модернизации вышеуказанной филетировочной машины для устранения конструктивных недостатков. Для достижения поставленной цели необходимо конструктивно решить задачу надежного распластывания тушки перед вырезанием филейчиков, а также устранить неравномерную подачу сырья к режущим рабочим органам.

#### МЕТОДЫ ИССЛЕДОВАНИЯ

В ходе исследования применены научные методы анализа и синтеза, а также метод эвристического решения изобретательских задач. Проведен анализ известных технический решений в области разработки и эксплуатации филетировочной техники и режущих рабочих органов, обобщена соответствующая литература, в том числе научные публикации отечественных и зарубежных авторов, монографии, патенты, техническая документация.

#### РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Новое техническое решение, предложенное впервые, обеспечивает повышение надежности подачи и фиксирования рыбы, а также улучшение точности реза и сокращение потерь ценного сырья. Для достижения необходимого технического результата в машине для филетирования рыбы, содержащей режущие элементы в виде двух спаренных дисковых ножей, в качестве распластывателя использовано роторное приспособление.

Ротор установлен на подпружиненный рычаг и приводится во вращение приводом от вала ножевого механизма. Ротор выполнен в виде двух валиков, установленных оппозитно с возможностью регулирования расстояния между ними, что позволит обрабатывать рыбу разного размера. Наличие указанных валиков позволяет раздвигать боковики тушки рыбы в стороны, что дает возможность разрезать тушку вдоль хребтовой кости, исключая нежелательное повреждение филе и обеспечивая лучшее центрирование. Для регулирования зазора используются ограничивающие шайбы, которые при необходимости изменения расстояния между валиками необходимо переставить из пространства между ними во внешнюю часть.

Ротор установлен на вал, приводимый в движение ременной передачей с плоским ремнем. Для обеспечения корректной работы колесо должно вращаться с той же скоростью, что и дисковые ножи. Поскольку ротор имеет диаметр 230 мм, а диаметр используемых дисковых

ножей -350 мм, то ременная передача рассчитана как мультипликатор с передаточным числом равным 1,5.

Вал ротора через подшипник качения закреплен на подпружиненном качающемся рычаге, представляющем собой коромысло, т. е. звено механизма, совершающее поворотное движение в пределах определенного угла. На рычаге, с противоположной от вала стороны, закреплен противовес в виде стального цилиндрического груза, предназначенный для уравновешивания. Для возможности регулирования усилия, прилагаемого к рыбе распластывателем, противовес закреплен на рельсе. По обеим сторонам от оси расположены две пружины, работающие на растяжение. Благодаря пружинам ограничивается угол вращения рычага и обеспечивается его возвращение в начальное положение. Также пружины позволяют автоматически настраивать положение колеса в зависимости от высоты тушки рыбы. Использование распластывателя позволяет разрезать филе «бабочкой» при смене конфигурации ножей. Благодаря раздвижению стенок тушки облегчается вырез хребтовой кости, при этом тушка остается целой.

Описание модернизации машины иллюстрировано на прилагаемых схемах, где на рисунке 1 показано предлагаемое устройство для филетирования рыбы, общий вид спереди; на рисунке 2 – то же, общий вид сверху; на рисунке 3 – ножевой механизм машины, общий вид.

На схемах приняты следующие обозначения: 1 — корпус; 2 — крышка корпуса; 3 — штифт; 4 — подающий лоток; 5 — штуцер подачи воды; 6 — омыватели; 7 — створки загрузочного лотка; 8 — опора электродвигателя; 9 — электродвигатель; 10 — кожух электродвигателя; 11 — вал ножевого механизма; 12, 13 — дисковые ножи; 14 — пружина сжатия; 15 — стакан пружины; 16 и 17 — ведущий и ведомый шкивы распластывателя; 18 — ротор распластывателя; 19 — подпружиненный рычаг; 20 — противовес; 21 — рельса; 22, 23 — пружины растяжения; 24 — лоток выгрузки; 25 — защитный ограничитель.

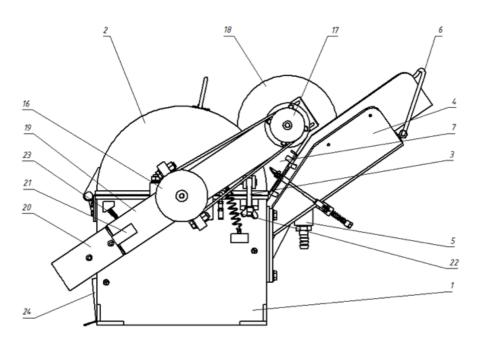



Рисунок 1 – Машина для филетирования рыбы, общий вид спереди

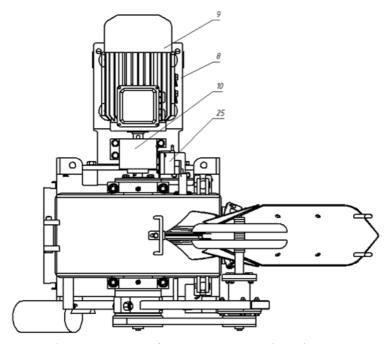



Рисунок 2 – Машина для филетирования рыбы, общий вид сверху

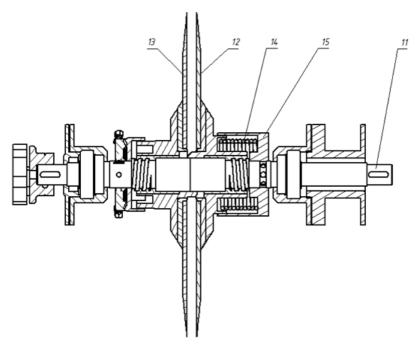



Рисунок 3 – Ножевой блок машины для филетирования рыбы, общий вид

При модернизации решена задача центрирования рыбы, которое обеспечено за счет использования распластывателя на подпружиненном рычаге с приводом ременной передачи от ножевого механизма. Ротор распластывателя выполнен в виде двух тонколистовых чашевидных валиков, оппозитно установленных с регулируемым зазором. Зазор регулируется таким образом, чтобы валик раздвигал боковики тушки и при этом не задевал хвост и плавники рыбы. Благодаря синхронизированному вращению ротора и дисковых ножей тушка существенно лучше проталкивается к спаренным режущим органам. Ротор установлен на вал, приводимый в движение ременной передачей от ножевого механизма с регулировкой частоты вращения для синхронизации скоростей ножей и колеса. Подпружиненный рычаг перемещается в пределах определенного угла, ограниченного растяжением пружин и упором. В процессе распластывания рыбы колесо поднимается вверх, растягивая пружины, затем после филетирования указанные пружины возвращают колесо в изначальное положение.

В машине для филетирования рыбы на корпусе 1 установлена крышка 2, предохраняющая механизм от попадания посторонних предметов в рабочую зону и защищающая от выброса отходов, которая фиксируется штифтом 3. Со стороны подачи сырья установлен подающий лоток 4, в нижней его части расположен штуцер 5, подающий воду, омывающую лоток через омыватели 6. На входе в корпус сверху лотка установлены створки 7, предотвращающие выброс отходов. На опоре 8 установлен электродвигатель 9, закрытый кожухом 10. Он соединен с валом ножевого механизма 11. На нем установлены дисковые ножи 12 и 13, один их которых соединен с пружиной сжатия 14, находящейся в стакане 15. С другой стороны вал соединен с ведущим шкивом 16, приводящим в движение через ведомый шкив 17 ротор распластывателя 18. Ротор установлен на подпружиненном рычаге 19, с противоположной стороны уравновешенный противовесом 20, который установлен на рельсе 21. С двух сторон от его оси установлены две пружины растяжения 22 и 22, ограничивающие его движение и возвращающие его в начальное положение. Со стороны выхода готового продукта установлен лоток выгрузки 24. Для защиты от случайного включения при открытой крышке на электродвигатель установлен защитный ограничитель 25.

Работа модернизированной машины осуществляется следующим образом. Обезглавленная потрошенная рыба без плечевых костей по лотку призматической формы 4 направляется хвостовым плавником вперед, брюшком вверх к вертикально расположенным створкам 7. Одновременно с этим на тушку начинает надавливать ротор распластывателя 18, установленного на подпружиненном рычаге 19, который раздвигает стенки рыбы. Вместе с этим рыба центрируется в вертикальном положении. Продвижение рыбы осуществляется под действием вращения ротора и усилия резания дисковыми ножами. При продвижении срезаются мягкие ткани тушки, а при соприкосновении кромки одного из ножей с позвоночной костью тушка автоматически отжимается ко второму ножу, что обеспечивает центрирование рыбы относительно ножей. При дальнейшем движении тушки увеличивается усилие резания вследствие увеличивающегося сечения позвоночной кости. При полном проходе рыбы в рабочую зону ножей ротор возвращается в начальное положение за счет пружин растяжения 22 и 23. На конце вала установлен шкив 16, передающий вращение на ротор распластывателя, вращая его с такой же скоростью, что и дисковые ножи.

Особенностью рассматриваемой машины для филетирования является автоматическая настройка ножей на толщину позвоночной кости рыбы, исключающая ручную регулировку зазора между ножами при настройке на определенный размерный диапазон обрабатываемых рыб. Настройка на определенный размерный диапазон обрабатываемых рыб осуществляется с помощью стакана пружины 15, регулировка которого отвечает за усилие сведения ножей зубчатой муфты, регулирующей первоначальный зазор между ножами 12 и 13. Для обеспечения безопасной работы машина для филетирования рыбы оборудована ограничителем 25 при открытой крышке 2. Электродвигатель 9 закрыт защитным кожухом 10 от попадания воды.

На основе предлагаемого подхода теоретически рассчитаны и подтверждены значения основных кинематических и мощностных показателей конструкции. Для подтверждения проектных параметров усовершенствованного образца филетировочной машины предполагается разработка технического и рабочего проектов устройства в компьютерном варианте. Планируется разработка программы стендовых испытаний макета, а также приобретение комплектующих, покупных и стандартных изделий. По результатам проведения стендовых и натурных испытаний макета будет откорректирована конструкторская документация.

Запланированы испытания макета машины с целью проверки возможности эффективного разделывания рыбы на филе на основе предлагаемой модернизации, оценки повышения универсальности конструкции и определения процента выхода качественного филе.

## **ЗАКЛЮЧЕНИЕ**

В результате проведенной модернизации машины для филетирования рыбы успешно решены технические задачи надежного распластывания тушки рыбы перед вырезанием хребтовой кости и устойчивого центрирования рыбы. Предложенный роторный распластыватель

на подпружиненном качающемся рычаге с приводом посредством ременной передачи от ножевого механизма характеризуется высокой надежностью, что обеспечивается расчетом деталей машин и их балансировкой. Наличие возвратных пружин позволяет обеспечить цикловый режим работы филетировочной машины. Синхронизация вращения ротора и рабочих органов предотвратит заклинивание сырья в ножевом механизме. Применение предлагаемого подхода к модернизации филетировочной машины позволит повысить качество готовой продукции и сократить потери ценного рыбного сырья. В модернизированной машине существенно снизится брак при выработке рыбного филе. Техническая разработка рекомендуется для изготовления усовершенствованных образцов филетировочной машины на производстве. Направлением дальнейшей работы является конструирование опытного образца усовершенствованной машины для проведения испытаний в промышленных условиях.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Increasing the Efficiency of Food Materials Cutting during Inclined and Shear Movements of Knife / O. V. Ageev, A. Dowgiałło, M. Sterczyńska, J. Piepiórka-Stepuk, N. V. Samojlova, M. Jakubowski // Materials. 2022. Vol. 15. P. 289.
- 2. Experimental characterization and mathematical modeling of fracture and friction resistance forces during tuna cutting / O.V. Ageev, A. Dowgiałło, M. Sterczyńska, J. Piepiórka-Stepuk, L. Giurgiulescu, M. Janowicz, M. Jakubowski // Journal of Food Engineering. 2021. Vol. 307. 110648.
- 3. Математическое моделирование сил сопротивлений при резании рыбы дисковым ножом / О. В. Агеев, Н. В. Самойлова, В. А. Наумов, Ю. А. Фатыхов // Научный журнал Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики. Серия: Процессы и аппараты пищевых производств. − 2021. − № 4(50). − С. 46–58.
- 4. Устройство для филетирования рыбы: пат. 2320178 РФ, МПК A22 C25/16 / О. В. Агеев, А. В. Шлемин; заявитель и патентообладатель Калининградский гос. техн. ун-т. № 2006143884; заявл. 11.12.06; опубл. 27.03.08; бюл. № 9.
- 5. Устройство для резки рыбного филе: пат. 2335131 РФ, МПК A22 C25/18 / О. В. Агеев, Ю. А. Фатыхов, А. В. Шлемин; заявитель и патентообладатель Калининградский гос. техн. ун-т. № 2007119058; заявл. 22.05.07; опубл. 10.10.08; бюл. № 28.
- 6. Устройство для резки рыбного филе: пат. 2453120 РФ, МПК A22 C25/18 / О. В. Агеев [и др.]; заявитель и патентообладатель Калининградский гос. техн. ун-т. № 2010154766; заявл. 30.12.10; опубл. 20.06.12; бюл. № 17.
- 8. Устройство для резки рыбного филе: пат. 2599622 РФ, МПК A22 C25/18 / О. В. Агеев [и др.]; заявитель и патентообладатель Калининградский гос. техн. ун-т. № 2015123433; заявл. 15.06.15; опубл. 10.10.16; бюл. № 28.
- 9. Устройство для филетирования рыбы: пат. 2626138 РФ, МПК А22 С25/16 / О. В. Агеев, А. Е. Ерыванов, Ю. А. Фатыхов; заявитель и патентообладатель Калининградский гос. техн. ун-т. № 2015157166; заявл. 29.12.15; опубл. 21.07.17; бюл. № 21.
- 10. Устройство для резки рыбного филе: пат. 2729351 РФ, МПК А22 С25/18 / О. В. Агеев, А. Е. Савельичев, М. Якубовский, А. Довгялло, Ю. А. Фатыхов, Н. В. Самойлова; заявитель и патентообладатель Калининградский гос. техн. ун-т. № 2019119060; заявл. 18.06.19; опубл. 06.08.20; бюл. № 22.
- 11. Устройство для резки рыбного филе на ломтики: пат. 2758270 РФ, МПК A22 C25/18 / О. В. Агеев, П. Р. Букуев, М. Якубовский, А. Довгялло, М. Стержинска, Ю. А. Фатыхов, Н. В. Самойлова; заявитель и патентообладатель Калининградский гос. техн. ун-т. № 2021100329; заявл. 11.01.21; опубл. 27.10.21; бюл. № 30.
- 12. Устройство для резки рыбного филе на ломтики: пат. 2807633 РФ, МПК А22 С25/18 / О. В. Агеев, Н. В. Самойлова, М. Э. Кокрицкий, Э. В. Суходольский, А. Л. Бондарь, А. В. Бойко, О. А. Зубков; заявитель и патентообладатель Калининградский гос. техн. ун-т. − № 2023107583; заявл. 28.03.23; опубл. 17.11.23; бюл. № 32.

# APPROACH TO MODERNIZATION OF FILLETING MACHINE FOR SMALL FISH PROCESSING COMPANIES

A. M. Krainov, student E-mail: andrey.kraynov.03@mail.ru Kaliningrad State Technical University

O.V. Ageev, Doctor of Technical Sciences, Professor of the Department of Technological Equipment Engineering E-mail: oleg.ageev@klgtu.ru
Kaliningrad State Technical University

The paper the relevance of further improvement of technological machines for fish filleting is shows. Disadvantages of the filleting machine used in small fish processing plants have been identified. An approach to modernizing the design to eliminate its critical shortcomings has been developed. A technical solution that ensures reliable flattening of the carcass before cutting out fillets, as well as preventing uneven feed of raw materials to the cutting working elements, is proposed for the first time. The machine is additionally equipped with a rotor, which is made in the form of two rollers installed oppositely with the ability to adjust the distance between them, which will allow flattening fish carcasses of various sizes. The proposed solution will increase the quality of finished products and reduce the loss of valuable fish raw materials. The use of the developed devices will reduce the number of defects during the production of fish fillets.

**Keywords:** filleting, fish, fillet, disc knife, cutting, spreader, resource saving, rotor.