

ТЕХНОЛОГИЯ ЖЕЛЕЙНО-ФРУКТОВОГО МАРМЕЛАДА, ОБОГАЩЕННОГО БИОЛОГИЧЕСКИ АКТИВНЫМИ КОМПОНЕНТАМИ ОВОЩНОГО И ЯГОДНОГО СЫРЬЯ

Е.В. Панкова, студентка, С.В. Агафонова, канд. техн. наук, andronova_sv@bk.ru ФГБОУ ВО «Калининградский государственный технический университет»

Исследовано содержание сухих веществ, витамина С и биофлавоноидов в свекле, клюкве и облепихе. Установлена возможность введения этого сырья в рецептуру желейнофруктового мармелада. С помощью метода математического планирования эксперимента установлены оптимальные количества вводимых в рецептуру облепихового и клюквенного пюре веществ, получена пространственная модель для рецептуры обогащенного мармелада. Исследованы органолептические и физико-химические показатели качества готового желейно-фруктового мармелада и содержание в нем биологически активных веществ.

желейно-фруктовый мармелад, свекла, желатин, клюква, облепиха, функциональные продукты питания, математическое планирование эксперимента

На сегодняшний день в Калининградской области наиболее распространены болезни кровообращения. Важным фактором, оказывающим влияние на здоровье сердечнососудистой системы человека, является питание. Из-за современного активного темпа жизни в рационе людей практически отсутствуют овощи, фрукты и ягоды, которые богаты витаминами, пищевыми волокнами и другими БАВ, способными оказывать благотворное влияние на организм, в том числе и кардиопротекторное действие. Для восполнения необходимых функциональных полезных компонентов и веществ интерес представляет кондитерская группа продуктов, как особо предпочитаемая всеми слоями населения. Наиболее интересным продуктом этой группы является мармелад, поскольку он обладает рядом преимуществ перед другими изделиями: сравнительно невысокая цена, низкая калорийность, способность связывать и выводить токсины и соли тяжелых металлов из организма человека.

Среди растительных компонентов для обогащения мармелада выделяются свекла, облепиха и клюква, как наиболее богатые витаминами, биофлавоноидами и антиоксидантами.

Свекла – источник углеводов, органических кислот, минеральных солей, клетчатки, белков, витаминов и биологически активных веществ. Из последних стоит выделить такое вещество, как бетаин – органическое вещество, содержащееся в свекле. Оно влияет на расщепление и усвоение животных и растительных белков, участвует в образовании холина. Кроме того, бетаин повышает прочность капилляров, снимает спазмы сосудов и снижает артериальное давление. В организме человека бетаин играет очень важную роль – он способствует детоксикации организма. Функция его также заключается в том, чтобы эффективно защищать клетки и ткани от обезвоживания и осмотической инактивации путем облегчения процессов накопления энергии в теле [1, 2].

Клюква очень богата витаминами особенно С, группы В, а также в ней содержатся А, Е, РР. Важной особенностью плодов клюквы в производстве мармелада является хорошая желирующая способность клюквенного пюре. Пектин, содержащийся в ягодах клюквы, образует плотную студнеобразную массу [3].

Облепиха ценна своим химическим составом. В ней содержатся необходимые организму человека витамины, минералы. Наличие большого количества витамина С в ягодах облепихи способствует снижению риска возникновения инсультов и инфарктов и укрепле-

нию сердечной мышцы. Полезные компоненты облепихи уменьшают уровень сахара и холестерина, понижают риск возникновения закупорки и тромбов кровеносных сосудов [4].

В качестве студнеобразователя в состав мармелада было решено включить желатин. Выбор обусловлен тем, что он благотворно влияет на сердечно-сосудистую систему: укрепляет сосуды, снижает проявления атеросклероза, нормализует процесс свертывания крови [5].

Для совершенствования рецептуры были проведены физико-химические исследования, включающие в себя исследование сухих веществ и биологически активных веществ в сырье. Биологически активные вещества определяли по методикам, описанным в [6]. Для определения витамина С использовали метод йодометрического титрования, для биофлавоноидов — перманганатометрию. Содержание сухих веществ определяли с помощью термогравиметрического анализатора МВ23. Для подтверждения достоверности результатов была проведена статистическая обработка результатов, полученных при трехкратной повторности опытов.

Экспериментальные данные по содержанию сухих веществ, витамина C, биофлавоноидов в свекле, клюкве и облепихе представлены в таблицах 1 и 2, также в таблице 2 приведено содержание бетаина в свекле (литературные данные).

Таблица 1 – Содержание сухих веществ в овощном и ягодном сырье

Объект	Содержание сухих веществ, %	
Свекла	10,5	
Клюква	13,8	
Облепиха	20,6	

Таблица 2 – Содержание биологически активных веществ в овощном и ягодном сырье

Объект	Показатель				
	содержание	содержание содержание			
	витамина С, мг%	биофлавоноидов, мг%	продукта [7]		
Свекла	6,5	24,3	128,7		
Клюква	6,1	12,0	-		
Облепиха	60,96	6,2	-		

Помимо желатина, свеклы, клюквенного и облепихового пюре, в рецептуру мармелада вошли патока крахмальная, сахар-песок и лимонная кислота. Для установления оптимального количества облепихового и клюквенного пюре применили метод математического планирования эксперимента с использованием ортогонального центрального композиционного плана 2-го порядка для двух факторов [8]: содержание каждого вида пюре, в % от количества вносимого студнеобразователя. Пределы варьирования и факторов оптимизации представлены в табл. 3.

Таблица 3 – Пределы варьирования и уровни факторов оптимизации

	Уровни			Интервал
Факторы		основной 0	верхний +1	варьирования $\Delta { m X}$
Количество клюквенного пюре $M\kappa(X_1)$, %	60	90	120	30
Количество пюре из облепихи Мо (Х2), %	30	45	60	15

В качестве частных откликов были выбраны суммарная органолептическая оценка (О, баллы) и содержание сухих веществ (СВ, %) в мармеладе. «Идеальные» значения частных откликов составили: 5 баллов для суммарной органолептической оценки — максимальное значение по пятибалльной шкале, и 76 % для содержания сухих веществ — значение, указанное в действующей технической документации для желейно-фруктового мармелада. С уче-

том «идеальных» значений частных откликов был рассчитан обобщенный параметр оптимизации (У). План эксперимента, согласно матрице ОЦКП второго порядка для двух факторов, представлен в табл. 4.

Таблица 4 – План эксперимента при моделировании рецептуры желейно-фруктового мармелада

Номер	План эксперимента		Част		Частные		Обобщенный
опыта	1		ОТКЛ	ики	безразмерные		параметр
					отклики		оптимизации
	содержание	содержание	Ο,	CB,	S_0^2	${ m S_{CB}}^2$	
	клюквенного	облепихового	балл	%			
	пюре, %	пюре, %					
	в натуральном	в натуральном					
	виде Мк,%	виде Мо,%					
1	120	60	5	62,74	0,00	0,0304	0,0304
2	60	60	3	70,13	0,16	0,0059	0,1659
3	120	30	3	65,78	0,16	0,0181	0,1781
4	60	30	1	79,62	0,64	0,0023	0,6423
5	120	45	3	63,36	0,16	0,0277	0,1889
6	60	45	3	74,67	0,16	0,0003	0,1603
7	90	60	4	65,78	0,04	0,0181	0,0581
8	90	30	3	70,13	0,16	0,0059	0,1659
9	90	45	5	76,00	0,00	0,0000	0,0000

В результате математической обработки данных были получены две модели – в кодированном (1) и натуральном (2) выражении:

$$y=0.0141-0.095x_1-0.122x_2+0.0822x_1x_2+0.1528x_1^2+0.0908x_2^2$$
, (1)

$$y=3,5995-0,04195M_{\kappa}-0,0609M_{o}+0,000183M_{\kappa}M_{o}+0,0001698M_{\kappa}^{2}+0,0004036M_{o}^{2}$$
 (2)

Дифференцирование уравнения (2) позволило получить оптимальные значения факторов: 100 % для клюквенного и 48 % для облепихового пюре к массе студнеобразователя.

Результатом проведенного математического моделирования стало построение пространственной трехмерной модели для рецептуры обогащенного желейно-фруктового мармелада, которая представлена на рисунке.

Технологический процесс изготовления мармелада осуществляется следующим образом. Прием сырья осуществляют по требованиям технической документации. Ягоды моют, свеклу моют и очищают, просеивают сыпучие ингредиенты. Ягоды протирают, свеклу измельчают и получают сок прессованием.

На втором этапе ягодное пюре подается в сироповарочный котел, загружается патока и сахар и уваривается при повышенном давлении и температуре 80°С до содержания сухих веществ 58 %. Желатин для набухания смешивают со свекольным соком и оставляют набухать при температуре 40°С в течение 20 мин.

После введения всех компонентов массу тщательно перемешивают и подают на уваривание. Мармеладную массу уваривают в варочных паровых котлах при температуре 85°C, до содержания сухих веществ 76 %. Формование осуществляется на мармеладоотливочной машине.

Готовый мармелад получил название «Бета». На мармелад разработаны проекты технической документации: Технические условия (ТУ) № 10.82.23.172-XXX-00471544-2018 «Мармелад желейно-фруктовый, обогащенный биологически активными веществами овощного и ягодного сырья Бета» и Технологическая инструкция (ТИ) к ТУ.

По органолептическим и физико-химическим показателям качества мармелад должен соответствовать требованиям ТУ, указанным в табл. 5, 6.

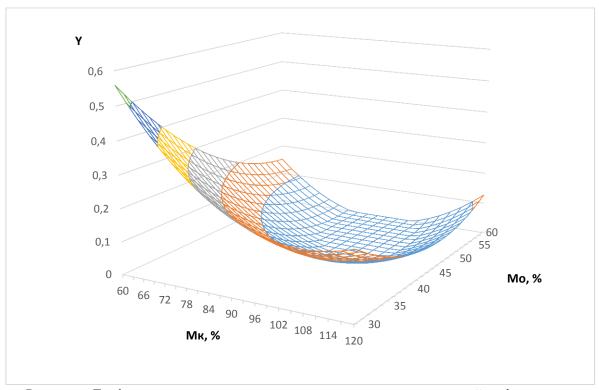


Рисунок – Графическая интерпретация моделирования рецептуры желейно-фруктового мармелада, обогащенного свекольным соком и ягодным пюре

Таблица 5 – Органолептические показатели желейно-фруктового мармелада «Бета»

Наименование по-	Характеристика		
казателя			
Вкус, запах и цвет	Характерные для данного наименования мармелада, без постороннего привку-		
	са и запаха. Цвет от красного до темно-красного.		
Консистенция	Студнеобразная. Допускается затяжистая.		
	Допускается присутствие косточек и семечек		
Форма	Соответствующая данному наименованию мармелада.		
	Для формового - правильная, с четким контуром, без деформации.		
	Допускаются незначительные наплывы		
Поверхность	Глянцованная или обсыпанная сахаром-песком		

Таблица 6 – Физико-химические показатели качества желейно-фруктового мармелада «Бета»

Наименование показателя	Норма
Массовая доля влаги, %	24
Массовая доля фруктового (овощного) сырья, не менее, %	35

В готовом продукте также было исследовано содержание биологически активных веществ – витамина С и биофлавоноидов. Экспериментальные данные представлены в табл. 7. Примерное содержание бетаина в 100 г продукта было рассчитано, исходя из литературных данных [7].

Таким образом, потребление $100~\rm r$ мармелада «Бета» удовлетворяет суточную потребность взрослого человека в витамине С на 30, а в биофлавоноидах — на 23~% и обеспечивает поступление $50~\rm mr$ бетаина.

Таблица 7 – Содержание биологически активных веществ в готовом желейно-фруктовом мармеладе «Бета»

Биологически активное веще-	Содержание	Суточная потребность	% удовлетворения	
СТВО	в 100 г	взрослого человека, мг	суточной потребности при	
	продукта	[9]	потреблении 100 г продукта	
Содержание витамина С, мг%	21,47	70	30,70	
Содержание	8,30	35	23,71	
биофлавоноидов, мг%				
Содержание бетаина, мг%	50,74	-	-	
(расчетным				
методом)				

Результаты исследований позволили сделать вывод, что желейно-фруктовый мармелад «Бета» является функциональным продуктом по содержанию биологически активных веществ — витамина С и биофлавоноидов. Благодаря этим компонентам, а также бетаину, продукт является полезным для всех категорий населения и способен оказывать благотворное влияние на сердечно-сосудистую систему человека.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кургузова, К. С. Столовая свекла как ценный компонент для создания продуктов здорового питания / К. С. Кургузова, Е. Ю. Гораш, Е. В. Великанова // Международная научно-практическая конференция «Инновационные исследования и разработки для научного обеспечения производства и хранения экологически безопасной сельскохозяйственной и пищевой продукции»: материалы. Краснодар, 2015. С. 33-36.
- 2. Исследование качества, безопасности и состава биологически активных веществ столовой свеклы / Е. Ю. Гораш [и др.] // Научный журнал КубГАУ. -2015. -№ 113(09). C. 1-11.
- 3. Курлович, Т. В. Брусника, голубика, клюква, черника / Т. В. Курлович. Москва: Издательский дом МСП, 2015.-128 с.
- 4. Яковлева, Т. П. Пищевая и биологическая ценность плодов облепихи / Т. П. Яковлева, Е. Ю. Филимонова // Пищевая промышленность. 2011. № 2. С. 11-13.
- 5. Аймесон, А. Пищевые загустители, стабилизаторы, гелеобразователи / А. Аймесон (ред.-сост.) / пер. с англ. д-ра хим. наук С. В. Макарова. Санкт-Петербург: ИД «Профессия», 2012.-408 с.
- 6. Землякова, Е. С. Технология напитков: методические указания к лабораторным работам для студентов высших учебных заведений по дисциплине «Технология биологически активных добавок к пище на основе биологического сырья» / Е. С. Землякова. Калининград: Изд-во ФГОУ ВПО «КГТУ», 2010. 88 с.
- 7. Коновалова, Е. Ю. Свекла // Увлекательно о фармакогнозии. [Электронный ресурс]. Режим доступа: http://pharmacognosy.com.ua/index.php/vashe-zdorovoyepitanije/ovoshchy/svekla (дата обращения 23.04.2018).
- 8. Мезенова, О. Я. Моделирование и оптимизация технологических процессов производства продуктов питания путем математического планирования эксперимента / О. Я. Мезенова. Калининград: Изд-во Φ ГБОУ ВПО «КГТУ», 2008. 45 с.
- 9. Нормы физиологических потребностей в энергии и пищевых веществ для различных групп населения Российской Федерации. МР 2.3.1.2432-08 // Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека [Офиц. сайт]. [Электронный ресурс]. Режим доступа: http://rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=4583 (дата обращения: 23.04.2018).

TECHNOLOGY OF JELLY-FRUIT MARMALADE ENHANCED BY BIOLOGICALLY ACTIVE COMPONENTS OF VEGETABLE AND BERRY RAW MATERIALS

E.V. Pankova, student, S.V. Agafonova, Candidate of Technical Sciences, andronova_sv@bk.ru Kaliningrad State Technical University

The content of dry substances, vitamin C and bioflavonoids in beets, cranberries and sea buckthorn has been studied and the possibility of introducing this raw material into the jelly-fruit marmalade formulation has been established. Using the method of mathematical design of the experiment, the optimal amounts of sea-buckthorn and cranberry puree introduced into the formulation were obtained, and a spatial model for the formulation of enriched marmalade was obtained. Organoleptic and physicochemical indicators of the quality of the finished jelly-fruit marmalade and the content of biologically active substances in it were investigated.

jelly-fruit marmalade, beets, gelatin, cranberries, sea-buckthorn, functional food products, mathematical experiment planning